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Abstract
We study the Rashba spin–orbit coupling (RSOC) effect on the supercurrent in a clean triplet
superconductor/two-dimensional electron gas/triplet superconductor (TS/2DEG/TS) junction,
where RSOC is considered in the 2DEG region. Based on the Bogoliubov–de Gennes equation
and quantum scattering method, we show that RSOC can lead to a 0–π oscillation of
supercurrent and the abrupt current reversal effect. The current direction can be reversed by a
tiny modulation of RSOC, and this is attributed to the equal spin pairing of the TS order
parameter and the spin precession phase of the quasiparticle traveling in the RSOC region. The
RSOC strength can be controlled by an electric field in experiments, thus our findings provide a
purely electric means to modulate the supercurrent in TS Josephson junctions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Josephson junction is an active research field in
condensed-matter physics, since it is a basic building block
for superconducting electronics with applications that range
from SQUID magnetometers to possible quantum computing
devices [1–3]. Modulation of the supercurrent is important
for various potential applications of Josephson junctions, and
a great deal of work has been devoted to this research field.
Recently, the so-called 0–π state transition in conventional
SC/FM/SC junctions (FM, ferromagnetic metal) has attracted
much attention [4–8]. The π state is referred to as the ground
state of the junction at the macroscopic phase difference φ =
π , and the critical current direction is opposite to the 0 state.
The π state in the SC/FM/SC junction is attributed to the
tunneling Cooper pair possessing a nonzero momentum due
to FM exchange splitting in the FM region. Actually, it is
not very convenient to modulate the FM layer length or the
FM exchange strength in the SC/FM/SC junction to realize the
0–π transition in a single device. Moreover, ferromagnetism
is unfavorable for the spin-singlet order parameter in the
FM region, and the critical current is suppressed greatly by
FM. Therefore, other alternatives [9–13], such as spin–orbit
interaction in two-dimensional electron gases (2DEGs), were
proposed to replace FM in realizing the π state and controlling

the supercurrent. A spin–orbit interaction in semiconductors
is much more desirable, because it is easy to integrate into
devices, and makes pure electric manipulation of devices
possible, without using any FM element or magnetic field.

Many authors [10–12] have studied the Rashba spin–orbit
coupling (RSOC) effect on the s-wave SC/2DEG/SC junction
(2DEG: two-dimensional electron gas), and they concluded
RSOC can not modulate the supercurrent as can FM. It is
agreed that RSOC keeps time reversal symmetry and the
singlet Cooper pair can not achieve any associated phase, when
the order parameter enters into the RSOC region, especially for
the one-dimensional case. This reminds us of the case of the
p-wave SC junction. The triplet order parameter is expected
to achieve a spin precession phase when the tunneling Cooper
pairs travel in the RSOC region, thus it is desirable to study the
RSOC effect on the triplet superconductor (TS) junction. The
Cooper pair potential of a TS is anisotropic and k-dependent,
�(k) ∼ id(k) · σσy , where d is a vector characterizing the TS
Cooper pair and σ is a Pauli operator with three components,
σx,y,z . Therefore, a spin supercurrent [14–19] may flow
through the junction besides the usual charge supercurrent, this
spin supercurrent results from the misalignment of d vectors
in two triplet SC leads. Although the vector d appears like
a magnetic moment, it is nonobservable and preserves time
reversal symmetry in a unitary state d × d∗ = 0. Recently,
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Figure 1. Schematic diagram of the TS/2DEG/TS junction studied in
this work, the current direction is along the z-axis and the d vectors
are in the xy plane.

Kastening et al [14, 15] found that unparallel d vectors (with
cross angle θ ) in a TS Josephson junction can have a huge
effect on the supercurrent, which exhibits an abrupt current
sign reversal or current switch effect at suitable θ . This
finding is very useful in the field of superconductor electronics
and quantum information technology. However, it is a big
challenge to modulate the cross angle θ , since the direction
of d is actually determined by the crystal axis. Therefore, it is
desirable to find some alternative to realize the abrupt current
reversal effect and control the supercurrent.

In this work, we study the RSOC effect on a clean TS
Josephson junction, which is composed of two equal spin
pairing TS leads and a 2DEG between them, with the RSOC
merely considered in the 2DEG region. A quantum scattering
method based on the Bogoliubov–de Gennes (BdG) equation
is employed to calculate the Josephson current. It is found
that RSOC has a significant effect on the supercurrent: firstly,
RSOC can indeed modulate the supercurrent, and the 0–π
transition of the TS junction is readily realized; secondly, the
length of the RSOC region is also a parameter to control the
0–π transition, since the spin precession phase from RSOC is
determined by both the RSOC strength and the length of the
2DEG layer; finally, the abrupt current reversal effect found
in [14, 15] is also achievable by merely modulating the RSOC,
which is more conveniently modulated than the direction of d
or the FM moment. As a matter of fact, the strength of RSOC
was shown in experiments by Nitta et al [20] to be modulated
by an electric field perpendicular to the 2DEG plane.

The organization of this paper is as follows. In section 2,
we present the model and formulae to calculate the Josephson
current. In section 3 we discuss the dependence of Josephson
current on the several parameters characterizing the system,
especially the RSOC. A brief conclusion is drawn in section 4.

2. Model and formulation

We consider a clean TS/2DEG/TS Josephson junction as
shown schematically in figure 1, constructed by sandwiching
a 2DEG layer with the RSOC effect between two semi-infinite
TS leads. The left (L) and right (R) TS are assumed identical
except for the different macroscopic phases and d vectors. Two
interface barriers at z = 0 and z = L are in the xy plane, and

the quantum spin axis is set along the z-axis. The BdG equation
describing the TS junction is given by [21]

(
H (k) �(k)

−�†(−k) −H ∗(−k)

) (
û
v̂

)
= E

(
û
v̂

)
, (1)

where H (k) = H0(k) + HRSOC(k), H0(k) = εk − μ + U .
μ is the chemical potential of the system, and the interface
potential is modeled by U = U0[δ(z) + δ(z − L)]. HRSOC =
λ
h̄ (σypz −σzpy)θ0(z) describes RSOC in the 2DEG region [22]
with λ the RSOC constant, and py , pz are the two components
of the momentum operator p, θ0(z) = θ(z)θ(−z+L)with θ(z)
the Heaviside step function. Neglecting the self-consistency of
the superconducting pair potential, �(k) is taken in the form

� j (k) = i�0(d j (k) ·σ )σyeiφ j , (2)

where�0 is a constant. φ j=L(R) is the macroscopic phase of SC
lead, φL = 0 and φR = φ are set in our consideration without
loss of generalization. The d j vector is in the xy plane and
d j = (cos(θ j), sin(θ j), 0). dL is parallel to the x axis (θL = 0)
and dR has an arbitrary angle θ upon the x-axis as shown in
figure 1. The pz orbital symmetry of the pair potential in both
SC leads is taken into account,�(kz) = −�(−kz) the same as
that in [14, 15].

The Josephson current can be expressed in terms of the
Andreev reflection (AR) coefficients by using the Furusaki–
Tsukada formalism [23]

IJ = e�0

h̄

∑
k‖

∫
dE

2π

[
(ke + kh)

2


(
c1

ke
+ d2

ke
− a3

kh
− b4

kh

)

+ c.c.

]
f (E), (3)

where c1, d2 are two spin-resolved AR coefficients of electron-
like quasiparticle, while a3, b4 are the AR coefficients of
hole-like quasiparticles of the two spin species. ke, kh are
respectively the z-component wavevectors of the electron-like
and hole-like quasiparticles in the TS leads, and k‖ is their

transverse momentum, 
 =
√

E2 −�2
0 with quasiparticle

energy E .
To obtain the four Andreev reflection coefficients, one

needs to determine the scattering waves in different regions
for each scattering process, e.g., the process for the spin-up
electron-like quasiparticle entering the 2DEG region from the
left SC lead and scattering at both interfaces is given by

ψe1(z � 0) = eik‖ y

⎡
⎢⎢⎣

⎛
⎜⎜⎝

ue−iθL+

0
v

0

⎞
⎟⎟⎠ eike z + a1

⎛
⎜⎜⎝

ue−iθL−

0
v

0

⎞
⎟⎟⎠ e−ike z

+ b1

⎛
⎜⎜⎝

0
−ueiθL−

0
v

⎞
⎟⎟⎠ e−ike z + c1

⎛
⎜⎜⎝
ve−iθL+

0
u
0

⎞
⎟⎟⎠ eikh z

+ d1

⎛
⎜⎜⎝

0
−veiθL+

0
u

⎞
⎟⎟⎠ eikh z

⎤
⎥⎥⎦ , (4)
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ψe1(z � L) = eik‖ y

⎡
⎢⎢⎣e1

⎛
⎜⎜⎝

ue−i(θR+−φ)
0
v

0

⎞
⎟⎟⎠ eikez

+ f1

⎛
⎜⎜⎝

0
−uei(θR++φ)

0
v

⎞
⎟⎟⎠ eike z + g1

⎛
⎜⎜⎝
ve−i(θR−−φ)

0
u
0

⎞
⎟⎟⎠ e−ikh z

+ h1

⎛
⎜⎜⎝

0
−vei(θR−+φ)

0
u

⎞
⎟⎟⎠ e−ikh z

⎤
⎥⎥⎦ , (5)

and

ψe1(0 < z < L)

= eik‖ y

⎡
⎢⎢⎣am1√

2

⎛
⎜⎜⎝

eiχ(α1)

1
0
0

⎞
⎟⎟⎠ eiqe1z + bm1√

2

⎛
⎜⎜⎝

−eiχ(α2)

1
0
0

⎞
⎟⎟⎠ eiqe2 z
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2

⎛
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0
0

−e−iχ(α1r)

1

⎞
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2

⎛
⎜⎜⎝

0
0

e−iχ(α2r)

1

⎞
⎟⎟⎠ e−iqh2z
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2

⎛
⎜⎜⎝

eiχ(α1r)

1
0
0

⎞
⎟⎟⎠ e−iqe1z + fm1√

2

⎛
⎜⎜⎝

−eiχ(α2r)

1
0
0

⎞
⎟⎟⎠ e−iqe2z

+ gm1√
2

⎛
⎜⎜⎝

0
0

−e−iχ(α1)

1

⎞
⎟⎟⎠ eiqh1z + hm1√

2

⎛
⎜⎜⎝

0
0

e−iχ(α2)

1

⎞
⎟⎟⎠ eiqh2z

⎤
⎥⎥⎦ ,

(6)

where

u =
√

1

2
+ 


2E
, v =

√
1

2
− 


2E
, (7)

θ j− = θ j+ + π , the scattering coefficients a1, b1 are two
spin-resolved normal reflections, while c1, d1 are the ARs in
equation (4). qe1, qe2, qh1, and qh2 are the spin-dependent
z-component wavevector of electrons and holes in the 2DEG
region. χ(αi ) = π/2 − αi , αir = π − αi and αi=1(2) are
the angles between particle wavevectors and the z-axis. Note
that the wavefunctions in equation (6) are presented with the
assumption of the spin quantum axis set along the normal
of the 2DEG plane, and they can be readily transferred to
the case of the spin quantum axis along the z direction by
a unitary transformation. The wavevectors of particles in

these three regions are expressed as ke0 =
√

k2
F + 2m
/h̄2,

kh0 =
√

k2
F − 2m
/h̄2, qe10 = qh10 =

√
k2

R + k2
F − kR, and

qe20 = qh20 =
√

k2
R + k2

F + kR, with kF =
√

2m EF/h̄2 and

kR = mλ/h̄2 being respectively the Fermi wavevector and
Rashba wavevector, EF is the Fermi energy. Since translational
symmetry is conserved along the interface direction, ke =√

k2
e0 − k2

‖ , kh =
√

k2
h0 − k2

‖ , qe1 = qh1 =
√

q2
e10 − k2

‖ , and

qe2 = qh2 =
√

q2
e20 − k2

‖ , with k‖ the transverse momentum

parallel to the interface. The dimensionless parameter Z =
2mU0/h̄2kF is defined as a measurement of the insulator barrier
strength and β = 2kR/kF represents the strength of RSOC in
the 2DEG region. The 16 coefficients in equations (4)–(6) can
be determined by applying the boundary conditions [24, 25] to
the wavefunctions at z = 0 and z = L as follows:

ψ(z)|z=+0 = ψ(z)|z=−0,

vzψ(z)|z=+0 − vzψ(z)|z=−0 = Z0τ3ψ(0),

ψ(z)|z=L+0 = ψ(z)|z=L−0,

vzψ(z)|z=L+0 − vzψ(z)|z=L−0 = Z0τ3ψ(L),

(8)

with Z0 = ZkF/im and

τ3 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

The velocity operator in the 2DEG lead along the z direction
in the boundary conditions is given by

v j z = ∂H

h̄∂kz
=

⎛
⎜⎜⎜⎝

h̄
im j

∂
∂z

iλ
h̄ θ0(z) 0 0

− iλ
h̄ θ0(z)

h̄
im j

∂
∂z 0 0

0 0 − h̄
im j

∂
∂z − iλ

h̄ θ0(z)

0 0 iλ
h̄ θ0(z) − h̄

im j

∂
∂z

⎞
⎟⎟⎟⎠ .

(9)
By solving the 16 linear equations, one can obtain the
useful AR coefficient c1 in equation (4). Certainly, there
are three other scattering processes needed to determine the
corresponding AR coefficients, d2, a3, b4, which together with
c1 are input into equation (3) for computing the Josephson
current.

3. Results

In this section, we present the numerical results of the
Josephson current flowing in the TS/2DEG/TS junction at zero
temperature T = 0 K. The Fermi wavevectors are set the
same in all three regions for simplicity, and the effect of a
mismatch of Fermi wavevector is actually equivalent to varying
the interface barrier strength. To simplify our calculations,
only the one-dimensional case is focused on in this work, as
in [14, 15], by assuming zero transverse momentum k‖ =
0. The Josephson current in the 2D case should not be
qualitatively different from the 1D case, moreover, the 1D
RSOC has been shown not to have an effect on the conventional
s-wave Josephson junction. Therefore, one needs firstly to
check whether the 1D RSOC can make a difference to the p-
wave Josephson junction.

As stated earlier, an abrupt current reversal effect occurs
in the TS/2DEG/TS junction, i.e., the current direction can be
switched swiftly by a tiny variation of the cross angle θ at
the suitable parameters. We first focus on the non-RSOC case
(β = 0) and present the supercurrent IJ as a function of φ and θ
in figure 2. The supercurrent in figure 2(a) has a discontinuous
jump at φZC ≡ (2n + 1)π with θ = 0 (solid line). This is

3
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Figure 2. The dependence of the Josephson current on the
macroscopic phase φ (a) and the cross angle θ (b), β = 0,
L = 20 nm, Z = 0, kF = 6.0 × 108 m−1.

the same as the supercurrent in the usual s-wave SC junction
because the Andreev bound states in energy gap are degenerate
at E = 0 when φ = φZC. In the s-wave case, the discontinuous
jump can be smeared by an insulator barrier, whereas it is
robust in p-wave junction due to the edge states [26, 27] at
the junction interface. When θ �= nπ , the two d vectors in
the TS leads are not parallel or antiparallel. The discontinuous
jump is split into two steps at φZC ± θ (the dashed line in
figure 2(a)), because the Andreev bound states’ degeneration
(E = 0) occurs at φZC ± θ . The charge supercurrent is now
spin-split due to the misalignment of d vectors, which actually
accounts for the spin supercurrent flowing [14, 15] in this TS
junction. This interesting phenomena is shown in figure 2(b).
The IJ can be modulated by the cross angle θ and the current
direction is abruptly reversed at θ = φZC ±φ, which is referred
to as the abrupt current reversal effect, described in [14, 15].

The RSOC is now turned on in the 2DEG region, β �= 0.
The current–phase relation IJ(φ) is shown in figure 3 with
different lengths L of the 2DEG between the two TSs. It is seen
that RSOC can have an effect on IJ, and the discontinuous jump
of supercurrent IJ is shown to be split into two steps at φZC ±γ
with γ = kR L being the Rashba spin precession phase. When
the spin-up and spin-down TS Cooper pairs enter the RSOC
region, the pseudomagnetic field from RSOC (perpendicular
to the momentum direction of the quasiparticle k) will cause
them to precess so that the spin-up and spin-down space of

Figure 3. The φ dependence of the Josephson current for θ = 0,
β = 0.05 with L = 20 nm (a) and L = 30 nm (b).

the TS order parameter are mixed. Therefore, the tunneling
TS Cooper pairs may acquire such a precession phase, and the
supercurrent exhibits a dependence on the phase γ . This is
basically similar to the FM effect found in a very recent work
by Brydon and Manske [28]. When an FM noncollinear to the
spin direction of the TS order parameter is considered between
the two TSs, the spin flipping effect could mix the tunneling
spin-up and spin-down Cooper pairs, and these spin-flipped
Cooper pairs can acquire an additional phase shift, similar to
γ in this work. In figure 3(b), two discontinuous jumps will
depart a little further from φZC with an increase of L, since
γ is proportional the length L of the 2DEG. It is noted that
the spin precession phase γ from RSOC is essentially different
from the cross angle θ , and it keeps time reversal symmetry
so that there is no charge supercurrent, as φ = 0, or spin
supercurrent, as θ = 0. In other words, RSOC can not lead to
spin splitting of charge current by itself, especially for the 1D
case studied here. When the interface barriers are considered
Z �= 0, the supercurrent is depressed a little in figure 3 and
the discontinuous jump remains unchanged, which is different
from the conventional s-wave supercurrent and comes from
edge states forming at the interfaces.

We proceed by examining the Josephson current
dependence on RSOC. The current IJ is plotted in figure 4
as a function of β by setting φ = 0.5π with θ ∈
{0π, 0.3π, 0.4π, 0.49π} in the left two panels and φ = 0.3π
with θ ∈ {0π, 0.29π, 0.31π, 0.4π} in the right panels. It is
shown in figures 4(a) and (b) that the charge current at φ =
0.5π exhibits a periodic oscillation and remains antisymmetric
around the current zeroth IJ = 0. The IJ–β relation here
resembles the IJ–θ relation in figure 2(b). An abrupt current

4
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Figure 4. The β dependence of the Josephson current for φ = 0.5π with θ ∈ {0π, 0.3π, 0.4π, 0.49π} in the two left panels and φ = 0.3π
with θ ∈ {0π, 0.29π,0.31π, 0.4π} in the two right panels, Z = 0 in (a), (c) and Z = 1 in (b), (d), L = 20 nm.

reversal effect appears, and the 0–π transition occurs in this
p-wave SC junction. It is also seen at φ = 0.5π that the cross
angle θ has little influence on the IJ–β relation in figures 4(a)
and (b), which suggests the spin precession phase γ from
RSOC is not simply shifting θ and depends crucially on the
macroscopic phase φ. When θ = 0.5π , the current curve
is a perfect rectangular wave at zero barrier strength Z = 0.
In figures 4(c) and (d) with φ = 0.3π fixed, the IJ–β is
very different from those in figures 4(a) and (b). The perfect
oscillation of IJ around the current zero is destroyed, and the
negative value of current vanishes as |θ − nπ | > φ, i.e., a
discontinuous jump of the current does not appear, either, and
the IJ–β exhibits the simple behavior of a cosine function.

As stated above, the discontinuous jump in IJ − φ is at
φ = φZC when θ = 0 and β = 0, otherwise, the jump will split
into two steps at φZC±θ . In figures 5(a) and (b), the IJ–θ curves
are shown at φ = 0.5π . The current jump occurs at θc = mπ ,
with m being a half integer, and RSOC does not shift these
discontinuous points, which are consistent with those shown in
figures 4(a) and (b). When φ = 0.3π , the case is very different.
The discontinuous jump θc occurs at θc = nπ ±φ with β = 0,
as shown in figures 5(c) and (d) (solid line). When the RSOC is
turned on (dot–dash and dashed line), the discontinuous points
θc will change and RSOC can have an effect. Nevertheless, the
current curves with different β cross each other at θ = mπ . It
is also seen in figures 5(c) and (d) that at |θ − nπ | < φ, the
sign of IJ with β = 0 can be opposite to those with β = 0.2
and β = 0.29, whereas at |θ − nπ | > φ, the signs of IJ for
all three values of β = 0, 0.2, 0.29 are the same, IJ > 0. This

is consistent with the curves in figures 4(c) and (d) that IJ can
only be a simple cosine function when |θ − nπ | > φ. It is
believed that due to the maximum of the cross angle θ between
two d being ±0.5π , the spin precession phase γ cannot cause
any additional shift phase as the compensated θc = ±0.5π
with φ = 0.5π .

Since the spin precession phase γ is determined by both
the length L of the RSOC region and the strength of RSOC,
the Josephson current is also expected to be modulated by the
length L. The results are presented in figure 6. IJ exhibits a
perfect oscillation with L, and the whole profile of the curves
resemble those in figure 4 where the I −β relations are shown.
For the Z = 0 case, a supercurrent of the rectangular wave
type also appears with a variation of L as φ = θ = 0.5π
(figure 6(a), black–solid line). In addition to oscillations of
the supercurrent due to the spin precession phase, there exists
another type of oscillation at Z �= 0 with a smaller period,
shown in figures 6(b) and (d), which stems from the usual
resonant tunneling of quasiparticles in the RSOC region due
to the two interface barriers. The oscillation period is related
to the Fermi wavevector kF, since kR/kF = 0.25 at β = 0.5.
The larger period from RSOC is exactly four times the smaller
one from resonant tunneling, as shown in figures 6(b) and (d).

The properties of the supercurrent in the TS/2DEG/TS
junction shown above indicate that RSOC can indeed make
a difference on the p-wave Josephson current, and the 0–
π transition can be realized; unlike the s-wave Josephson
current, where RSOC was shown to have no influence on
the supercurrent, especially in the 1D case. Since the

5
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Figure 5. The dependence of the Josephson current on θ for φ = 0.5π in the two left panels and φ = 0.3π in the two right panels with
L = 20 nm and β ∈ {0, 0.2, 0.26}, Z = 0 for (a) and (c), Z = 1 for (b), (d).

Figure 6. The L dependence of the Josephson current for φ = 0.5π with θ ∈ {0π, 0.3π,0.4π, 0.49π} in the two left panels and φ = 0.3π
with θ ∈ {0π, 0.29π,0.31π, 0.4π} in the two right panels, Z = 0 in (a), (c) and Z = 1 in (b), (d), β = 0.5.
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RSOC strength was demonstrated to be controlled by a
perpendicular electric field upon the 2DEG plane [20], our
findings in this work are measurable with today’s experimental
techniques. More importantly, the abrupt current reversal effect
in TS/2DEG/TS, found in [14, 15], can also be realized by
modulating the RSOC via an electric field. This is much more
convenient than either modulating the magnitude and direction
of an FM moment, or rotating the cross angle θ of the two d
vectors that point in a fixed direction in crystal.

4. Conclusions

In summary, we have investigated the RSOC effect on the
supercurrent in a clean TS/2DEG/TS junction by using the
BdG equation and the quantum scattering method. Unlike
the singlet order parameter of a s-wave SC, the TS order
parameter with equal spin pairing can be influenced by RSOC,
and the tunneling Cooper pairs in the RSOC region can achieve
an additional phase, the spin precession phase. Therefore,
the supercurrent exhibits an oscillating behavior and the 0–
π transition occurs by modulating the RSOC strength. In
addition, the current switch effect can also be found in this
junction by controlling the RSOC instead of modulating the d
vector directions or the FM moment. Our results may shed
light on the modulation of the Josephson current by purely
electric means without involving any magnetic factors.
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